The Use of Spray-Dried Mn3O4/C Composites as Electrocatalysts for Li–O2 Batteries
نویسندگان
چکیده
The electrocatalytic activities of Mn₃O₄/C composites are studied in lithium-oxygen (Li-O₂) batteries as cathode catalysts. The Mn₃O₄/C composites are fabricated using ultrasonic spray pyrolysis (USP) with organic surfactants as the carbon sources. The physical and electrochemical performance of the composites is characterized by X-ray diffraction, scanning electron microscopy, particle size analysis, Brunauer-Emmett-Teller (BET) measurements, elemental analysis, galvanostatic charge-discharge methods and rotating ring-disk electrode (RRDE) measurements. The electrochemical tests demonstrate that the Mn₃O₄/C composite that is prepared using Trition X-114 (TX114) surfactant has higher activity as a bi-functional catalyst and delivers better oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic performance in Li-O₂ batteries because there is a larger surface area and particles are homogeneous with a meso/macro porous structure. The rate constant (kf) for the production of superoxide radical (O₂•-) and the propylene carbonate (PC)-electrolyte decomposition rate constant (k) for M₃O₄/C and Super P electrodes are measured using RRDE experiments and analysis in the 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆)/PC electrolyte. The results show that TX114 has higher electrocatalytic activity for the first step of ORR to generate O₂•- and produces a faster PC-electrolyte decomposition rate.
منابع مشابه
One-step synthesis of Mn3O4/reduced graphene oxide nanocomposites for oxygen reduction in nonaqueous Li-O2 batteries.
A Li-O2 battery based on the Mn3O4/RGO nanocomposite (monodispersed Mn3O4 nanoparticles supported on RGO) cathode exhibits excellent ORR activity and an outstanding initial discharge capacity as high as 16,000 mA h g(-1).
متن کاملOne-pot synthesis of manganese oxide-carbon composite microspheres with three dimensional channels for Li-ion batteries
The fabrication of manganese oxide-carbon composite microspheres with open nanochannels and their electrochemical performance as anode materials for lithium ion batteries are investigated. Amorphous-like Mn3O4 nanoparticles embedded in a carbon matrix with three-dimensional channels are fabricated by one-pot spray pyrolysis. The electrochemical properties of the Mn3O4 nanopowders are also compa...
متن کاملSynthesis of perovskite-based porous La(0.75)Sr(0.25)MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries.
Rechargeable lithium–oxygen (Li-O2) batteries have recently attracted great attention because they can theoretically store 5–10 times more energy than current lithium-ion batteries, which is essential for clean energy storage, electric vehicles, and other high-energy applications. However, to use Li-O2 batteries for practical applications, numerous scientific and technical challenges need to be...
متن کاملNanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries.
Although lithium-ion batteries are traditionally considered to be the most promising candidate for electrochemical energy storage owing to their relatively long cycle life and high energy efficiency, their limited energy density as well as high cost are still causing a bottleneck for their long-term applications. Alternatively, rechargeable Li-O2 batteries have the potential to practically prov...
متن کاملInvestigation of MnO2 and Ordered Mesoporous Carbon Composites as Electrocatalysts for Li-O2 Battery Applications
The electrocatalytic activities of the MnO2/C composites are examined in Li-O2 cells as the cathode catalysts. Hierarchically mesoporous carbon-supported manganese oxide (MnO2/C) composites are prepared using a combination of soft template and hydrothermal methods. The composites are characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, small...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016